A test for Archimedeanity in bivariate copula models

نویسندگان

  • Axel Bücher
  • Holger Dette
  • Stanislav Volgushev
چکیده

We propose a new test for the hypothesis that a bivariate copula is an Archimedean copula. The test statistic is based on a combination of two measures resulting from the characterization of Archimedean copulas by the property of associativity and by a strict upper bound on the diagonal by the Fréchet-upper bound. We prove weak convergence of this statistic and show that the critical values of the corresponding test can be determined by the multiplier bootstrap method. The test is shown to be consistent against all departures from Archimedeanity if the copula satisfies weak smoothness assumptions. A simulation study is presented which illustrates the finite sample properties of the new test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Test of symmetry for semiparametric bivariate copula

The copula function is a multivariate distribution whose marginal distributions are uniformly distributed on the interval [0,1], this function called copula that ties the joint and the margins together. One important class of copula models is that of semiparametric copula models. In this paper, a semiparametric copula and its properties are introduced also a test of symmetry for semiparametric ...

متن کامل

Nonparametric Identification of Copula Structures

We propose a unified framework for testing a variety of assumptions commonly made about the structure of copulas, including symmetry, radial symmetry, joint symmetry, associativity and Archimedeanity, and max-stability. Our test is nonparametric and based on the asymptotic distribution of the empirical copula process. We perform simulation experiments to evaluate our test and conclude that our ...

متن کامل

Goodness-of-fit Tests for Archimedean Copula Models

In this paper, we propose two tests for parametric models belonging to the Archimedean copula family, one for uncensored bivariate data and the other one for right-censored bivariate data. Our test procedures are based on the Fisher transform of the correlation coefficient of a bivariate (U, V ), which is a one-toone transform of the original random pair (T1, T2) that can be modeled by an Archi...

متن کامل

Bivariate simulation using copula and its application to probabilistic pile settlement analysis

This paper aims to propose a procedure for modeling the joint probability distribution of bivariate uncertain data with a nonlinear dependence structure. First, the concept of dependence measures is briefly introduced. Then, both the Akaike Information Criterion and the Bayesian Information Criterion are adopted for identifying the best-fit copula. Thereafter, simulation of copulas and bivariat...

متن کامل

Bivariate Kumaraswamy models via modified symmetric FGM copulas: Properties and Applications in Insurance modeling

A copula is a useful tool for constructing bivariate and/or multivariate distributions. In this article, we consider a new modified class of (Farlie-GumbelMorgenstern) FGM bivariate copula for constructing several different bivariate Kumaraswamy type copulas and discuss their structural properties, including dependence structures. It is established that construction of bivariate distributions b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2012